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The behavior of the solution of a system of equations for a nonsteady boundary layer is 

studied for a two-dimensional flow of incompressible fluid during an unlimited length of 

time. It is proved that under defined physical conditions, the longitudinal velocity component 

of the unsteady flow in the boundary layer tends to the longitudinal velocity component of 

a steady flow at t + 00. 

We consider a system of boundary layer equations for a two-dimensional, nonsteady 

flow of a viscous incompressible fluid (see, for example [l]) 

in the region D (0 < t < cc, 0 < 2 < z,,, 0 < y < co} with the conditions 

u Iy=o = 0, u/y-0 = ZJo (0), UIr=o = Ul (4 Y), lim u (47,p) = U (Cz) 
ll- 

where the functions p (t, x) and U (t, x) are related by Bernoulli’s law 

1 ap ---= 
P ax 

z+Ug (3) 

We assume that when t + m, the given functions p (t, z), U (t, z), and v,, (t, x) 

tend uniformly, in terms of x, to the corresponding functions pm (z), UC= (x), and 

T (z), and U1 (t, Y) is, when t > t,, where t, > 0 is some number, independent 
of t, i.e. when t > t,, u1 (t, y) coincides with some function UT (y). We consider a system 

of Prandtl equations for a steady boundary layer 

au ug+v_-:-- 
ay 

; tT!!&++ g++o 
in the region DC0 (0 < z < x0, 0 < y < CO} with the conditions 
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u 1 ‘, 0 =-- 0, v/!, o == UT (z), uI,=~ = UT (y), lim u (2, y) == (:-1J (x) is) 
Y-+~ 

We shall assume that the solution ZF (5, y), and Voo (z, y) of the system (4) with 

conditions (5) exists, and that it possesses the following properties: &a/ iJy>o when 

0G.Y m *and both U” (5, y) and &a/ t3y h ave continuous and bounded deriva- 

tives, of the first order with respect to x and y, in D”; also, the derivatives d3ua/ &~s 

and &F/ 8~ exist. 

We will also assume that the solution u (t, 5, ;Y), and v (t, 5, g) of the system 

of equations (1) with conditions (2) and (3) exists, and has the foilowing properties : 

ck /8y > 0 when 0 < y < CC, u (t, 2, y) snd 4~ / $Y have continuous and 

bounded first order derivatives, with respect to t, n and y, in D ; continuous derivatives 

8% / dy3, and 8~ / dy exist and, 

L 
+Y.!LY.!C~- (!!?j’j(zEj_9<h. 

(61 

in D, where K is some constant. These assumptions are always fulfilled even when phys- 

ical limitations are imposed on the problems (1) to (31 as well as (4) and (5). provided 

zo is sufficiently small (see [2,and 31). 

In [2] a system of Prandtl equations (4) with the conditions (51, was studied. It was 

proved there that the solution of the problem (41 and 6) exists in the region Dm for some 

x,, > 0, provided that the functions p” (z), V? (x), ulOo (g), and Uco (z) satisfy 

certain conditions of smoothness, that all agree at the point (0, 0) and that the conditions 

U? (y) > 0 when y > 0 and U” (z) > 0 w h en x >,O,are fulfilled. The solution 

urn (3, y), and uw (2, y) derived in the above-mentioned work is such, that 

auco/ay > 0 when y > 0, if dul"/ 8y > 0 when Y > 0. 

In [3] a solution was derived of the system of boundary layer equations for the unsteady 

state (1) with conditions (2) and (3) in the region D for some x0 > 0, Here some evenness 

of the functions p (t, z), U (t, z), u,, (z, y), u. (t, x), and us (t, Y), is assumed, 
as well as their agreement with the equations of (11, and with the boundary conditions on 

the straight Iine t = 0, y = 0 and t = 0. IC = 0. Also, it is assumed that U (t, xl > 0 and 

u,fx,y)>Owheny>O,and &,fiQ>O whenO\<y<co. 

This solution satisfies the condition 

WY>0 when O<~y<oo 

as well as the condition (6). We will show that 

fit u (t, 5, Y) = UC0 (5, y) (71 

for all x, y in D”. This means that the solution u (8, X, y) of the system of boundary layer 

equations fortinsteady flow of a viscous incompressible fluid tends towards the solution 

ZL~ (t, z) when t -+ M ,the latter solution corresponding to the problem of a system of bound- 

ary Iayer equations for the steady state. In particular, if follows from this, that when 

t + M, the longitudinal velocity component u ft, X, yl becomes stationary in the boundary 

layer during any perturbation of the steady solution, i.e. of the functions zF, 2>04, p”, 

uio3, and U”, in the finite interval of time 1. 

In order to prove the relation (7) we eliminate 1: from the system (11 using the crocco 

transform : 
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a = t, E = 5, q = u (f, 5, Y) 
Then the new unknown function w = &J 1 dg satisfies the equation 

(8) 

intheregionQ(O<~<cm, O<~<xo, o<r)fU(~,E)}. 

From the conditions (3) it follows that at the boundary of the region fl the function 

w should satisfy the conditions 

11; LJ = % - wo (L tl), w ~E=o = $ = WI (E, q), w fn=r&Q = 0 

(9) 
t3W 

YfUx 
_L-1-t3p_uzu 

pa.2 0 ii = 0 li=o 
In Equations (4) and (5) we make an analogous transformation of the independent 

variables 

E = 5, 7 = u (5, Y) 

and introduce a new unknown function w = au / ay. 

The function tu satisfies the equation 

in the region52tQ {O < E < so, 0 < q < U" (E))f, and the conditions 

(10) 

on the boundary of the region nm. We will denote the solution of Equation (IO) with the 

conditions (ll),by zP (E, q). 

We will consider the function v (z, 5, 9) = w (7, E, q) -Woo (E, ?J), in the 

region 0, , which is the intersection of the region Q with the cylinder (0 < T < 00, 

0 < 5 < 50, 0 < 11 < Uoo($J)* H ere w is the solution of the problem (8) and (9) 

and w” is the solution of the problem (10) and (11). Subtracting Equation (10) for w” from 

Equation (81, we obtain the equation for V 

The function V (‘c, E, 7) satisfies the conditions 
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uniformly with x, whiIe W, 8w /-a~ are bounded in Q, therefore I@ (T, E, q) I< & 

and 1 Y (T, 8 1 < ET if T> 7r and 7t is sufficiently great and E is an arbitrary positive 

number. It is obvious that 

according to the previous assumption concerning u1 (t, y). 

Let ‘p (s), which is twice continuously differentiable when S> 0, be equal to 3 - es 

when 0 < s < ‘1% and be such that 1 < cp (s) < 3 for all s. 

We consider the function Y,, defined by the equality 1’ = Y1&T (I-J,?), where CL > 0 

and /? > 0 are some sufficiently large numbers to the chosen beIow. 

We shall show that V, (7, %, q) --+ 0 as T+ m uniformIy with respect to 6 and 9 and, 

consequently, V (a, %, q) = w (z, %, q) - UP (E, q) -+ 0 as 7--, M+ 

From Equation (12) we obtain an equation for v, (z, %, 7) 

If aq < 1/2, then - :!<t~~‘<---1, 9°C -4,and 1<4p\(& By 

virtue of the properties of the solution UC0 (5, y) of the problem (4) and (51, the function 

woo (%l rl) > a > 0 , w h ere o is some constant, if 0 < Tj < 6, , 8, > 0 is 

sufficiently small and 32~ / 8’12 is bounded. We shall choose u > 0 large enough to 

satisfy 

Where the constant M can be chosen arbitrarily. 

With u chosen in such a manner, the coefficient c in equation (14) is smaller than 

- M, if al? < If2 and YI < 6,. 

We will further choose fl> 0 so Iarge that when ?l > min (‘/a a-l, 6,) the coeffici- 

ent c of V, in Equation (14) will be smaller 

tions 

vr Lo = (~0 (El rl) -20” (S, 11)) 6+ 

than - M. The function V, satisfies the condi- 

(15) 

i 
-9 
cp 

~lIE=O = (WI (z, r) -uP(rl)) + 

When choosing U, we may also assume 
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Hence, it can be assumed that, in the conditions (15), cl > 1. 

If Tis sufficiently great, then 1 U (z, t) - U” (&) I< X, where x > 0 is an 
arbitrary known number. Therefore 

1V/‘1=Iw- @‘I\<8 when q>Uco(t) -X9 r>% 

provided X and t2-’ are sufficiently small, since the function WoD (f, 11) + 0 as 

U” (E) - q +, f) and w (T, E,q) -+ 0 as U (z, f) - q--+ 0 uniformly with 7. Here, 

E > 0 is any given number. Consequently 

IV11 +-++g when Z > Zzs ? > UC0 (4) - x 

We shall denote the part of the region 4, for which ‘t > U , by G,. Let 6 > 0 be an 

arbitrary given number. We will show that, in n,, 

I VI (‘6, E, q)I\< 6 + M,e+ (16) 

where y > 0 is any constant less than M ; the constant M, > 0 depends upon 6 and Y. We 

consider in G, the functions W*: 

IV+ = 6 + Mle-YT + V,, W_= 6 + MleYr - T.TI 

Here 6 and y are already given, while M, shall be chosen below. The functions W+, and 

w_ satisfy the equation 

L (W-J = cMle-Y+ + yM,e-Y’ + c6 + cDrfi$ (17) 

We note that c < - M and y <M. Therefore the sum of the first two terms in the right&& 

side of Equation (17) is negative. Since I~-l@e-K 1 --+ 0 as T+ m uniformly with 4‘ and 

r,~, then 

f @e-g4 ‘p-l + ~6 < 0 when 8 > 0 

if 7 is sufficiently great. This shows that L (W+) < 0 and L (W_) < 0 in G,, if P is suf- 

ficiently great. 

From the inequality t (W,) <O in Go it follows that Wf cannot have a negative 

minimum inside the region Go or when [= x u, and also on the secant 7= TS, 7, > 0, if 

W* is considered for u < r< 7.. 

We shall also show that Iv, cannot have a negative minimum on the remaining part of 

the boundary of Go, if D is sufficiently great, i.e. W+ >/O and W_ >O in Go. When [= 0, 

we have W, >/ 0 also on this part of the boundary region of G,, which lies on the surface 

71=_Um~orrl=U(7,4),sinceV,IE=o=0 for sufficiently large T and I v,I < t: when 

q > U (0 - x and 7> TV. Let us choose E < 6 and sufficiently small corresponding 

x and ‘tr-l. 

When q = 0 , we have 

l (W,) = - cl (6 + Mle-Yr) f ‘/,Ye+~ < 0 

provided T > z4 and T., is sufficiently great, since c1 > 1, and IYe+ 1 -+O as T+ 00 

uniformly with respect to 5. Thus W, cannot have a negative minimum when 11~ 0 and 

T> 7,. We will choose M, large enough to fulfil the inequalities W+ > 0 and W > 0, when 
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7 = (3 (G> 72, a>xJ * 
Thus, everywhere in Go, providedu is sufficiently large, IV* > 0 and, consequently, 

-!-VI f M,e-+* + 6 > 0, 

(18) 

It is obvious that having increased, if necessary, the constant Mt , we obtain from (18), 

that the inequality (16) is true in Q2, for some constant Mt. From (18) it follows that 

w (z, E, rlf ---* woo fE% rl) uniformly with respect to [and q when T+ 00. Hence, it follows 

that 

lim u (t, I, y) = UC0 (2, y) 
t+co (19) 

for all x and y in If-. 

Indeed, [ U" (x) -P (G .?I) I< e and 1 U (4 4 - u (f, 2, Y) I< E for y> ylr 
since w (T, E, q) - 0 when U (T, E) - r -+ 0 uniformly with respect to 7. Thus 

I uoo (x, !f) - ZJ 0, 5% ?A I < 25 mt 

for sufficiently large t and y > yr. 

When .V < y, < 00 the inequaiity (20) results, for large 8, from the representation of 

z&o (5, y) and u (t, x, y) by functions of up” and tu. Indeed 

u(Qx/) uoo (J, nr) 
ds 

Y =f 
I m(4 2,s) ’ ?I= s t 
0 0 

w_s 5) 

We have 

Uff,T>Yf ““‘$2 L0 
ds 

@%? Ii) 

o= 
!I 

ds 

w (6 2‘ 4 - s ?P(2, s) = s i 
&$-)&+“~t’s’“‘~ 

0 0 0 U~(~,Y) 

Since 

u (4 4 - 24 (t, 2, y) > xl, Uoo (x} - UP (x, y) > x1 for Y<Yx 

and, besides 

zJ.r (& 2, 4 > a1 > 0, wm(x, s) > al)0 for s<iijt,r)--xi, s<Ucd(5)--%x1 

hence, we have 

u”oc:, If) 

b! (t, J, Y) - uDo (5, y> = w (t, 5, $1) 
s 

(w --*I (js 

wwoo 
for Y d Yi 

0 

Where st is confined between u (t, x, y) and tlao (z, y). Hence, it follows that 

I u (4 x* $4 -U~(X,y)~~~6,+M~~yf for YfYl 

and for some positive constants a, and Ma ; 8, can be taken to be arbitrarily small, M, 

varies with 8, and yr. Thus u (t, X, y) -+ uw (x, y) as t-+m for 0 < x < ro, 

OfY<=* 
Note 1. If the functions p (t, x), &' (t, x), U, (t, x), and u, (t, y) are such that 
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when t > t, they do not depend on I, then we easily see that it is possible to prove the 

inequality (16) when 6 = 0. In such a case we have 

1 w (T, :, 7) - u_Py (5, 11) 1 6’ Jl,c-~~ (21) 

in 9, where y is any number and .M, is some constant, depending upon y. From the ine- 

quality (21) it follows that, in this case, 

1 u (4 5, Y) - UDc (2, 9) f < Afee-Y’, if !/<:t < w, 0 d .t’ *. .f’,, 

Here, Ma depends upon y and yt . 

Note 2. Above it was assumed, that u1 (t, y) in the conditions (3) are independent of 

t for sufficiently large t. The equality (16) will also be true if this assumption is replaced 

with the condition that 

uniformly with respect to y and 1 $-’ - U~~-’ 1 -+o as t + a0 uniformly with respect to 

q, where ut-1, utw-1 are the corresponding inverse functions for ut and uy, i.e. 

?l =: Ut (t, Yf, y f= Ut-’ (t, 9) and ~1 r= ~1~ (y), y = its-’ (q) 

In this case 

f 

Hence, from the above assumptions, it follows that /T/ I;zzo - * 0 as t + m uniformly 

with respect to 7, since o’?~t> / &J? is bounded when 0 <-. y ( 00. This is sufficient 

for the proof of the inequalities (16) and, consequently, (19). 

The author thanks G.I. Rareblatt for his adjudication of the results of the present 

paper. 
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