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The behavior of the solution of a system of equations for a nonsteady boundary layer is
studied for a two-dimensional flow of incompressible fluid during an unlimited length of
time. It is proved that under defined physical conditions, the longitudinal velocity component
of the unsteady flow in the boundary layer tends to the longitudinal velocity component of

a steady flow at £ » o0,

We consider a system of boundary layer equations for a two~dimensional, nonsteady
flow of a viscous incompressible fluid (see, for example b

du du du 1 ap ?u du dv
w Tty s v m TV mty T 0
in the region ) {0 <t << oo, 0L 2z 0 < y << oo} with the conditions
Ul = u, (2,
lt=o o (z, ¥) 2

U y=o = 0, vlu=0 =0y (£,2), Ulz=o=u, (¢, y), limu (Y = U (@¢52)
Y~

where the functions p (¢, x) and U (¢, x) are related by Bernoulli’s law

(3)

We assume that when ¢ » o, the given functions p (f, z), U (¢, ), and v, (¢, x)
tend uniformly, in terms of x, to the corresponding functions p™ (), U (z), and
Ug° (1:), and Uy (t, Y) is, when ¢t > ¢, where £; > 0 is some number, independent
of ¢, i.e. when ¢t > ¢,, u, (¢, y) coincides with some function ug (y). We consider a system
of Prandt] equations for a steady boundary layer
du du 1 9p® 2u

du v
" T e P wm Ty =0 v

in the region D® {0 < z <{ z,, 0 <{ y < o0} with the conditions

505



506 .4, Heinik

uly o= 0, vlyo= 09 (a), Ule=o = uP ), if’jou (z, y) = L> (2) (5

We shall assume that the solution U™ (, y), and v® (z, y) of the system (4) with
conditions (5) exists, and that it possesses the following properties: gu®/ dy >0 when
0 <y < oc,and both u® (z, y) and Qu®| dy have continuous and bounded deriva-
tives, of the first order with respect to x and y, in D™ also, the derivatives 63u°°/ E)y3
and gu™/ dy exist.

We will also assume that the solution 1 {f, &, ¥), and U (£, Z, ) of the system
of equations (1) with conditions (2) and (3) exists, and has the following properties:
du [0y >0 when 0 <y < oc, u(l, %, Y) and Au | By have continuous and
bounded first order derivatives, with respect to ¢, x and ¥, in D; continuous derivatives

0w | 8y%, and Gy [/ Oy exist and,

" ®u du 0% 3/ du =3 .
|55 — (&) (5T <X ®
in D, where K is some constant, These assumptions are always fulfilled even when phys-
ical limitations are imposed on the problems (1) to (3) as well as (4) and (5), provided

%o is sufficiently small (see {2,and 31).

In [2] a system of Prandtl equations (4) with the conditions (5), was studied. It was
proved there that the solution of the problem (4) and {5) exists in the region D™ for some
%> 0, provided that the functions p> (x), v (z), u™(y), and U® (x) satisfy
certain conditions of smoothness, that all agree at the point {0, 0) and that the conditions
u;" {n > 0 when y > 0 and U® (1) > 0 when x >0,are fulfilled. The solution
u® {(z, y), and 9® (z, y) derived in the above-mentioned work is such, that
u® | dy >0 when y >0, if gy / gy > 0 when y > 0.

In [3] a solution was derived of the system of boundary layer equations for the unsteady
state (1) with conditions (2) and (3) in the region D for some %, > 0, Here some evenness
of the functions p (£, ), [/ (t, x), uglx, ¥), vy (t, x), and Uy (t, y), is assumed,
as well as their agreement with the equations of (1), and with the boundary conditions on
the straight line t =0, ¥y =0 and £ =0, x = 0. Also, it is assumed that U (¢, x} > 0 and
o (%, y) >0 when y >0, and Ju; / 0y > 0 when §  y < oo.

This solution satisfies the condition
?“—%&>0 when 0y oo

as well as the condition {6), We will show that
‘lim u (t, Z, y) == Y (III, Z/) (7)
—00

for all %, y in D™, This means that the solution u (¢, x, ¥) of the system of boundary layer
equations forwnsteady flow of a viscous incompressible fluid tends towards the solution
u> (t, ) when t - o ,the latter solution corresponding to the problem of a system of bound-
ary layer equations for the steady state, In particular, if follows from this, that when

t » o0, the longitudinal velocity component u (¢, x, y) becomes stationary in the boundary
layer during any perturbation of the steady solution, i.e. of the functions u™, p,>, p®,
u©,®, and U™, in the finite interval of time ¢

In order to prove the relation {7) we eliminate v from the system {1) using the Crocco

transform :
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t=t t=z, n=ulzY
Then the new unknown function 1 == du [ Gy satisfies the equation

1 9p Sw

0w dw ow .
b NgE T w ®

Al
in the region Q {0 {1 < o0, 0<LEC 2, 0L U (7, &)}
From the conditions (3) it follows that at the boundary of the region {1 the function
w should satisfy the conditions

Jug du
w §t=0 = W =Wy (g, 1’]), w ¥E=0 = —égl— =wy (5, T}), w !'{&zU(t,i) =0 ©
9
ow 1 dp
(v T~ 3w )], =0
In Equations (4) ard (5) we make an analogous transformation of the independent
variables
E == &, "] =Uu (xv y)
and introduce a new unknown function w = Ju [ dy.
The function w satisfies the equation
9w ow 1 8p% ow
2 o e I o b 0
vwé)n? n8§+p az 611“0 1o
in the region Q% {0 < §E < 7, 0 < n << U™ (B)}, and the conditions
auy* __
w li=0 = ay - wloo (“): w iﬂ=U°° ©) = 0
{11)
dw 1 9p™
(w o — &% — )], =0

on the boundary of the region (3™, We will denote the solution of Equation (10) with the
conditions (11), by w® (&, 1]),

We will consider the function V (1, §, ) = w (1, § n) — w* (§, 1), in the
region ), , which is the intersection of the region {) with the cylinder <1< oo,

0K 13 < s 0 < U= (§)} Here w is the solution of the problem (8) and (9)
and ™ is the solution of the problem (10) and (11), Subtracting Equation {10) for w™ from
Equation (8), we obtain the equation for V

oy av v 1 8p™ &v 8%
M S e TV Ty e e YR G V= 0w g )
A fp®  ap\ 12

®<r,§,ﬂ)-—?(*—az —W)—an

The function V (1, §, 1) satisfies the conditions

V}t=o = Wy (g, Ti) — w® (§, ’f]), V€i=0 = w (1, 11) - Un> (ﬂ)

(\.‘wmg% -+ (v%% ._.pooo> V) L=o =¥ (r, t) (13)
Since ¥(mi)= K% %g - %%) + (vo — vo%) w] =0
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aplt, z) 8p°° (z)

o (, ) — v™ (z) whent-> o0

o dz !
uniformly with x, while w, 0w ["3n are bounded in (), therefore |D(r, &, n)|<<e
and | ¥ ( EY|<e& if7>7, and T, is sufficiently great and € is an arbitrary positive
number. It is ohv1ous that
du o™
Vi_, = it S e SN — t
L‘U 3y 3y 0 when 1> 1

according to the previous assumption concerning u, (¢, y).

Let @ (s}, which is twice continuously differentiable when >0, be equalto 3 — ¢°
when 0< s < 1/'2 and be such that 4 < ) (g) <3 for all s.

We consider the function ¥y, defined by the equality V = Ve (am), where a >0
and 3> 0 are some sufficiently large numbers to the chosen below.

We shall show that ¥, (1, §, 1) — 0 as 7~ oo uniformly with respect to £ and 7 and ,
consequently, V (1, £, m) =w (1, §, 1) —w™ (§, M) — 0 as T>ee.

From Equation (12) we obtain an equation for V; (1, §, 1)

oy v aV
L(Vl)Ev(wO")Z@—ﬁ;L — 6_11 — 1 +
12 av @5
+ ( 5 P ) L= 14

c;v(w—}—wm)%w

gt LTy o 9
p oz @ ?
Ifan <Y, then— 2 < @' < — 1, ¢ < —1, and 1<(P\<§3. By
virtue of the properties of the solution 4™ (z, y) of the problem (4) and (5), the function
00 (E. 'r]) >a > O, where a is some constant, if 0 < n < 61 s 51 >0is
sufficiently small and 02w/6n2 is bounded. We shall choose @ > 0 large enough to
satisfy

a2 1
v (w 4 w*®) aﬂuj — B+ 2%—

—g vt —M (M>0)

Where the constant ¥ can be chosen arbitrarily.

With a chosen in such a manner, the coefficient ¢ in equation (14) is smaller than
M, i < 2y and <6,

We will further choose 8> 0 so large that when M > min (}/, @™, 8,) the coeffici-
ent ¢ of V, in Equation {14) will be smaller than — M. The function V, satisfies the condi-

tions

(15)
Vilemo = (wo (E, m) —w™ (, n)) e~B% —f;, Vili=o = (w1 (%, M) —w1™ (1)) ~§,;

v,

(Vy)e= (vwo"a— — c1Vl>

1 ¢ 1 dw
e — ~8E - 00 o
5 Ye—hE, G = ( 5 Ve — v + 74 )}-r,:o

When choosing @, we may also agssume

a> (maxivg [+v5 g

7T
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Hence, it can be assumed that, in the conditions (15), ¢, > 1.

I Tis sufficiently great, then |U (v, §) —U*® (8)| %, where ¥ >0 isan
arbitrary known number. Therefore

[V]=|w—w>|<e when nSU®E)—% T1>7

provided ® and vy ! are sufficiently small, since the function w® (§, 1) —0 as
U (B) — N—0 and @ (z, &) — Qas U (v, £) — n— 0 uniformly with 7. Here,
€ > 0 is any given number. Consequently

|V1[=]Ve‘35—;7 e when T> T2, N> U®(E)—%

We shall denote the part of the region {},, for which T >> 0, by G,. Let 8> 0 be an

arbitrary given number. We will show that, in , ,
[Vi(t, E, IS + My (16)

where y > 0 is any constant less than M ; the constant ¥, > 0 depends upon 8 and y. We

consider in Ga- the functions Wt:

W+ = 6 + Mle-'Y‘t + Vl' W_= 6 + Mle“ —_ V]_
Here § and y are already given, while M, shall be chosen below. The functions W+. and
W_ satisfy the equation

L (Wy) = cMe® + yMe ™ + ¢§ + cbraa% a7

We note that ¢ <— M and y <M. Therefore the sum of the first two terms in the right-hand
side of Equation (17) is negative. Since |¢7'MeP%| — 0 as 7~ o uniformly with £ and
1, then
+ Qe e o+ c8 < 0 when 6>0

if T is sufficiently great. This shows that L (W+) <0and L{W_)<0in Go,, if o is suf-
ficiently great.

From the inequality L (W,) <0 in G_ it follows that W, cannot have a negative
minimum inside the region G, or when &=x,, and also on the secant T=T,, 7, > O, if
Wt is considered forc <7< T;.

We shall also show that ¥, cannot have a negative minimum on the remaining part of
the boundary of G_, if 0 is sufficiently great, i.e. W,>0and W_>0in G . When £=o0,
we have ¥, >0 also on this part of the boundary region of G, which lies on the surface
N=U®(£) or n=U(T, &), since Vi|emo = 0 for sufficiently large 7 and |V,| < & when
n>U(E) — % and 7> 7;. Let us choose ¢ <7 § and sufficiently small corresponding
%X and T,7L,

When 17 =0, we have

LWa) = — ¢ 6 + Mye™) & Yy¥es: < 0
provided T >> T4 and 7, is sufficiently great, since ¢, > 1, and |We B | -0 as T+o00

uniformly with respect to £. Thus W, cannot have a negative minimum when 7 =0 and
T> T,. We will choose M, large enough to fulfil the inequalities W,>0 and ¥ >0, when
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T=0(0> Ty, 0351y,
Thus, everywhere in GU, provided ¢ is sufficiently large Wi > ( and, consequently,

+Vi+ M+ 6 >0,
Vi< 8 + My in G, (18)

It is obvious that having increased, if necessary, the constant M, we obtain from (18),
that the inequality (16) is true in {}; for some constant M,. From (18) it follows that
w (T, §, ) — w> (§, n) uniformly with respect to £ and 7 when 7 oo. Hence, it follows
that
limu(tyxz y) = u* (CL‘, y) (19

t—o00

for all x and y in D™.

Indeed, | U™ () —u® (z, y)[< eand | U (t, 2) —u(t, 2, y) <& fory>y,,
since w (7, §, 1) — 0 when U (7, ) —n -0 uniformly with respect to 7. Thus

ue (z, y) — u (t, =, y) | < 2e (20)

for sulficiently large ¢ and y > y,.

When ¥ < Yy < 00 the inequality (20) results, forlarget, from the representation of
u™ {x, y) and s {¢, %, y} by functions of w* and w. Indeed

t,x, u®(x, ¥)
u(t.x,v) s B ds
y o 5 w (t’ z, 3) ! y - w°° (x, S)

0

We have
X, o

o u(t,x,y) ds wi, v) 2 B u%(x, ) (i_ R ‘)ds +u(t.x.y) s
= S T 75 - 3 w-°°(x. ) - w w® ’ w(t, z, s)
0 0 0 u®(x, y)
Since

Ui, ) —u(t,z,y) >n, Ue(@)—u2(z,y) >n for y<n
and, besides

wt,z, ) >a, >0, wo(z, ) >a, >0 for s<T{, 2)—wm, s<SUP(2)—%

hence, we have
uC(x, 1
S (w—w®)
u(t,r,y) —u{r,y) =wilt, zs) A ds for ¥

ww
0

Where s, is confined between u (¢, x, y) and 4*° (x, y). Hence, it follows that
fu(t, z, ) —ue(z, ) | <8 + Myt for y<wu
and for some positive constants 5, and M, ; 5, can be taken to be arbitrarily small, ¥,
varies with 8, and y,. Thus & (2, 2, ¥} — u™ (z, y) as t» o for 0 < & < 1,

0 <<y oo
Note 1. If the functions p (f, z), U (¢, z), v, (t, %), and 1, (¢, y) are suck that



Stability of solutions of boundary layer equations 511

when ¢ > ¢, they do not depend on ¢, then we easily see that it is possible to prove the

inequality {16) when & = 0. In such a case we have
lw (v, &) —we (5, )| < M (21

in (), where y is any number and ¥, is some constant, depending upon y. From the ine-
quality (21} it follows that, in this case,

fu @z, y)—ue (2, P | < Moe™, i y<Sy<loo, O<rsiay

Here, M, depends upon y and y, .

Note 2. Above it was assumed, that 4, (¢, ¥) in the conditions (3) are independent of
t for sufficiently large t. The equality (16) will also be true if this assumption is replaced

with the condition that

3u1 6!&100
ufud S -0 as {-» 00
oy oy
uniformly with respect to y and |4, — ;%! | -+ 0 as ¢ » co uniformly with respect to

— . . . oo .,
1, where ™! u, o1 are the corresponding inverse functions for u, and u, , i.e.

?

n=u, &y, y=u ¢ Mandn = 1,2 y), ¥ = u, " (n)

In this case

174 Oup (L, y) ('I) Juy(tig (M) dus™ (™1 () <
Vim0 = | =5y dy dy N

duy (2, uy 1 (2, (7 “Y1t, HFu -
< |Gt — s ‘;;( Tml“*"“ | T () — o )|

Hence, from the above assumptions, it follows that 'Vl’--o -+ as t » o0 uniformly
with respect to 77, since 0°u,> [ gy* is bounded when () <~ y <~ oc. This is sufficient
for the proof of the inequalities (16) and, consequently, (19).

The author thanks G.I. Bareblatt for his adjudication of the results of the present

paper.
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